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Note 

A Fast Poisson-Solver for Large Grids 

One of the simplest fast direct methods for solving the discrete Poisson equation is 
adapted for use in very large problems where the right-hand side and solution fields must 
be stored on disc. The performance of the algorithm described here is compared with that 
of a technique due to Schumann for a three-dimensional Poisson problem on a (128)” grid. 

1. Introduction 

Fast direct methods (“Poisson-solvers”) [2, 3, 4, 51 are well-established for the 
solution of the discrete Poisson (or simple Helmholtz) equation in the case of moderate- 
sized problems which can easily be accommodated within the fast random-access 
memory of a computer. The purpose of this note is to demonstrate that one of the 
simplest such algorithms can easily be extended to very large problems for which only 
a small proportion of the gridpoint values can be held in memory at any one time. 

The scheme described here was developed for use in a large numerical weather 
prediction model. Implementation of a semi-implicit time integration algorithm [l] 
requires the solution at each timestep of a three-dimensional discrete elliptic equation 
in spherical coordinates, with grid dimensions up to 360 x 180 in the horizontal, and 
I5 vertical levels. Diagonalization of the vertical part of the finite-difference operator 
reduces the problem to a set of Helmholtz equations, each of which must be solved 
over a horizontal grid covering the surface of the sphere. 

To simplify the discussion, we present the scheme here in the context of a two- 
dimensional Poisson problem in Cartesian geometry. The extension to three dimen- 
sions is immediate, and results are included of an experiment to test the scheme on the 
solution of a discrete three-dimensionalPoisson equation over a 128 x 128 x 128 grid. 

2. Algorithm 

Suppose that we wish to solve the discrete Poisson equation (using centered second- 
order differences) over the grid (i, j: 0 ,< i < N, 0 6 j < M) with homogeneous 
Dirichlet boundary conditions and unit gridlength. Let 
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Then the discrete Poisson equation can be written as a block-tridiagonal system: 

xj-1 + Axj + xj+l = bj , 1 <jdM-1, (1) 

with x,, = X~ = 0, where A is the tridiagonal matrix of order (N - 1) with constant 
diagonal term -4, and l’s on the sub- and superdiagonals. 

Let S be the matrix representation of a Fourier sine transform; thus S is a square 
matrix of order (N - 1) with elements given by S = (Q), where sij = (2/N) sin@/N). 
With this scaling, S-l = (N/2)S. Denote the components of the vectors $ = Sxj 
and bi = Sbi by 9,,j and !& (1 < k < N - 1), respectively. 

Then the basic FFT method for solving the system (1) proceeds as follows: 

(1) For each line j, 1 < j < M - 1, calculate bi = Sbj , using Fast Fourier 
Transform (FFT) techniques; 

(2) For each wave number k, 1 < k < N - 1, solve the tridiagonal system 

$k,j-l + XkRk,j + ik.j+l = &k,j 9 l<j<M-1 

with &O = kk,M = 0, where A, = 2 cos(kn-/N) - 4; 

(3) For each line j, 1 < j < M - 1, calculate xj = S-lfj . 

Suppose now that the right-hand side is stored on disc, with the data partitioned 
into (M - 1) records each corresponding to a vector bj , and that the solution is to be 
written to disc in the same format. Steps (1) and (3) of the algorithm outlined above 
can easily be implemented, since we can read in one record at a time, multiply the 
vector by S or S-l, and write out the resulting record. However, step (2) appears to be 
more difficult, since for each tridiagonal system we require one element from each 
record j, 1 < j G M - 1. In effect we need to reorder the data by columns rather 
than rows for step (2), and then to reverse the reordering ready for step (3). Schumann 
[6] has devised a “fast matrix transpose” algorithm for externally stored data, which 
can be used for this purpose [7]. 

There is, however, a much simpler solution. We solve each tridiagonal system (2) 
by means of the following algorithm, based on Gaussian elimination: 

wk.O - - 0; 0k.j = (h, - w&1)-l, 1 <jjM-1; (3) 

g k.0 = 0; gk,i = wk.j(6k.j - gk,j-11, 1 <j<M--1; 
II 

Xk.M - > - 0. 2k.j = gk,j - wk,jgk,j+l 3 M-l >j>l. 

In the following algorithm description, it is helpful to define 
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where the first subscript of the vector components corresponds to the wave number 
index k. The coefficients ale,? can be precomputed and stored on disc in the same 
format as the other fields, so that each record contains a vector wj . Also, we use the 
notation ab to denote componentwise multiplication of two vectors. 

For a problem in memory, it is natural to solve one tridiagonal system at a time; 
however, as they are independent they may be solved in parallel. This feature is 
useful for implementation on parallel computers [3] or vector machines. 

Moreover, by solving them in parallel the sine transforms and the solutions of 
tridiagonal systems can be interleaved in the following manner: 

(a) Forward sweep: initialize by setting g, = 0. Then for each line j, 1 < j d 
M- 1: 

(1) Read in the vector bj , and multiply by S to formb, . 
(2) Calculatef$ - gjpl . 
(3) Read in the coefficient vector wj and calculate gj = wj(bj - g,-J. 
(4) Write gj to disc and proceed to line (j + 1). 

(b) Backward sweep: initialize by setting iiM = 0. Then for each linej, M - 1 3 
j> 1: 

(1) Read in the coefficient vector wj and calculate w&+~ . 
(2) Read in gj and calculate %j = gj - w~$+~ . 
(3) Multiply jzj by S-l to form x, . 
(4) Write x5 to disc and proceed to line (j - 1). 

At the end of the backward sweep, the complete solution has been written to disc, the 
whole process requiring 6 (M - 1) input/output (I/O) operations, where an operation 
consists of reading or writing one record. This compares with (6M + 5n/i log,M) I/O 
operations (for M = N) in the algorithm suggested by Schumann [7], and for a 
128 x 128 problem represents an 85 % reduction in I/O requirements. 

The coefficient vectors wj may be generated and written to disc during the forward 
sweep, without altering the number of I/O operations. Unfortunately it is not possible 
to economize on I/O by generating them again during the backward sweep, since the 
backward recursion corresponding to Eq. (3) is numerically ill-conditioned. 

The minimum number of memory locations required for data is 2(N - l), excluding 
memory for the I/O routines. In order to achieve a reasonable degree of parallelism 
between computation and Z/O operations, it is necessary to allow a further 2(N - 1) 
memory locations for buffering. 

The reverse reading of the records from disc storage is most easily accomplished 
by random or direct access input routines, but can be performed with sequential 
I/O routines using the equivalent of the Fortran BACKSPACE feature. 

For computer systems with virtual storage or a paging mechanism, the I/O opera- 
tions could be performed by the operating system automatically, and indeed efficiently, 
provided that the vectors xj , etc., have been carefully ordered. 
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By allowing a small number of extra lines in memory at a time, Hackney’s FACR (1) 
algorithm [4, 51 can also be implemented in this way, provided that the tridiagonal 
systems are again solved by Gaussian elimination. The method also extends imme- 
diately to the three-dimensional discrete Poisson equation, which can be solved by 
performing a two-dimensional FFT on each plane, solving tridiagonal systems in the 
third direction, and then performing a two-dimensional inverse FFT on each plane; 
it is simply necessary to replace lines by planes in the algorithm described above. 

3. Implementation 

To demonstrate the effectiveness of the algorithm, two Fortran programs were 
written to solve the three-dimensional Poisson equation over a 128 x 128 x 128 grid. 
One implemented the scheme presented here, while the other used a generalization 
of Schumann’s transpose algorithm in which the fields were treated as N x N matrices 
with vectors of length N as matrix elements. In both cases the right-hand side and 
solution fields were stored on disc as 128 records each of dimension 128 x 128, and 
space was allowed for four such records to be held in memory simultaneously. Full 
use was made of I/O routines permitting data transfer and computation to proceed in 
parallel. Both programs were run on a CDC 6600. 

The algorithm described here required 340 set of CPU time, and 195 set of I/O 
time; almost complete overlapping was achieved, so that the optimum elapsed time 
was also about 340 sec. 

Schumann’s algorithm required 380 set of CPU time, the increase being mainly 
due to the data transfers within memory required during the transpose phases. The 
I/O time was 1,350 set, with an optimum elapsed time in the region of 1,500 sec. 

The right-hand side was derived from a prescribed solution field consisting of 
random numbers in the interval [-1, fl], against which the computed solutions 
were checked. The maximum error was 1.14 x lo-l2 (in both cases, as the programs 
were identical in terms of floating-point computation). 
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